
What’s New in the Web
Content Accessibility

Guidelines (WCAG) 2.2

Lainie Strange
OA-ITSD, Web Accessibility Specialist

Agenda

 Brief History of the Web Content Accessibility
Guidelines (WCAG) and State Adoption

 Six A/AA WCAG 2.2 Guidelines
 2.4.11 Focus Not Obscured (Minimum) (AA)
 2.5.7 Dragging Movements (AA)
 2.5.8 Target Size (Minimum) (AA)
 3.2.6 Consistent Help (A)
 3.3.7 Redundant Entry (A)
 3.3.8 Accessible Authentication (Minimum) (AA)

Brief History of WCAG and the State Standard
WCAG
Version

Publication
Date

Focus MO State
Adoption

1.0 1999 HTML accessibility 2003
2.0 2008 Four core POUR principles 2017
2.1 2018 Addresses mobile accessibility, low

vision, cognitive and learning
disabilities

2024

2.2 2023 Addresses mobile accessibility, low
vision, cognitive and learning
disabilities, especially on mobile
devices

2025

• RSMo 161.935 – Effective 1999, requires accessibility of Information and
Communication Technology

• The State of Missouri began adopting the WCAG guidelines through the
State’s Accessibility Standard document

http://revisor.mo.gov/main/OneSection.aspx?section=161.935&bid=7938&hl=

WCAG 3.0?

 Renamed: W3C Accessibility Guidelines
 First draft, 2016
 Currently a working draft
 September 2025 Update: Publication schedule will

be announced early 2026
 The conformance model will change
 The state’s current standard outlines that any new

WCAG guidelines will be adopted two years after
the publication date

2.4.11 Focus Not Obscured (Minimum) (AA)
When an element receives focus, it must be at least partially visible.
Role:
 Designer
 Developer
What is it?
Any item receiving keyboard focus should always be at least partially visible
on the user’s browser window. This guarantees that focused elements are
not completely hidden by other content like sticky headers, footers, or
modals. And, while it’s best to keep the elements fully visible, it’s not
required at the AA level.
Who is Affected?
 People who rely on keyboards or assistive technology to navigate.
 People with low vision.
 People with cognitive disabilities.

2.4.11 Focus Not Obscured (Minimum) (AA)

Why does it matter?
 When focused elements are hidden or blocked from view,

users relying on keyboards or assistive technology can’t tell
where their interaction is happening. This makes it harder to
navigate and complete tasks, leading to frustration. Hidden
elements can also make it seem like the system isn’t
responding.

2.4.11 Focus Not Obscured (Minimum) (AA)
Testing Focus Visibility
 As users tab through a page, all focused elements should remain at least partially visible.

Make sure other content, such as modals, banners, or dialogs, doesn’t fully block
focused elements.

 Design modal dialogs to take focus when they appear and prevent interaction with
underlying content. Ensure notifications like cookie banners are dismissible, preventing
them from obscuring focusable elements.

 Check content magnified up to 200%, to ensure the resized layout doesn’t hide
interactive elements. components like sticky headers or footers.

 In this example, the scroll-padding-top and scroll-padding-bottom values adjust the page
layout to ensure interactive elements, like form fields or buttons, are visible when
focused.

html {
scroll-padding-top: 100px; /* Space for a sticky header */
scroll-padding-bottom: 50px; /* Space for a sticky footer */
}

 As a bonus, the scroll-behavior property helps create smooth
scrolling transitions, so the sudden shift isn’t too harsh.

/* Example usage for smooth keyboard navigation */
body {
scroll-behavior: smooth;

2.5.7 Dragging Movement (AA)
Actions that require dragging (like reordering) must also be possible using buttons or
another method that does not require dragging.
Roles Affected:
 Designer
 Developer
What is it?
 If a task on your website requires dragging, there must be an easier alternative

provided.
 Instead of dragging, users should be able to complete the same action with a single

tap, click, or other simple input.
 Dragging motions are typically found in things like sliders, color pickers, sortable

lists, Kanban boards (where you drag and drop tasks), and interactive maps.
 While this sounds a lot like WCAG 2.5.1 Pointer Gestures, they aren’t the same:

with dragging, only the start and end points matter, but gestures usually mean the
user has to follow a path with their mouse or finger.

 Similarly, the WCAG 2.1.1 Keyboard success criteria require that dragging
movements be keyboard accessible. However, that’s not enough to meet this one.
Dragging must also work with a single tap or click for users who don’t use
keyboards.

https://aaardvarkaccessibility.com/wcag-plain-english/2-5-1-pointer-gestures/
https://aaardvarkaccessibility.com/wcag-plain-english/2-1-1-keyboard/

2.5.7 Dragging Movement (AA)
Why does it matter?
 Without single-pointer options for dragging, some users might

not be able to use certain parts of a website. People with
mobility issues might find dragging difficult or tiring, like when
panning across a map or dragging items in a website builder.

 People who use assistive tools like trackballs or eye-gaze
systems might not be able to make dragging motions at all.
Simple features like sliders for volume control can be completely
inaccessible.

Who is affected?
 People with mobility or fine motor control issues
 People using different types of input devices

2.5.7 Dragging Movement (AA)
How to implement 2.5.7
Single Pointer Alternatives
 For any component, element, or interface that needs dragging, make sure

there’s an easy single-pointer option as an alternative.
 Single-pointer options can include clicking a button or typing in

a value. For example:
 For a volume slider, allow users to type a number value into an input

or click simple +/- buttons to adjust the volume

 For sortable lists, allow users to reorder items with up/down buttons

 For interactive maps, allow users to pan using directional buttons

 Remember, while offering keyboard shortcuts as alternatives to dragging is
great and necessary for other success criteria, it’s not sufficient to meet this
success criterion. You need to provide a single-click/tap alternative or a simple
input.

2.5.8 Target Size (Minimum) (AA)
Targets must be at least 24×24px, unless they are part of a sentence or
block of text, surrounded by enough space, or near another target with
the same function that meets the size.
Role Affected:
 Designers
 Developers
What is it?
 Buttons, links, and other interactive elements should be at least 24 x

24 pixels. If that’s not possible, they should have enough empty space
around them to make clicking easier.

 Even if an element is smaller than 24 x 24 pixels, it can still pass if
there’s enough space between it and other clickable elements. But it’s
always a good idea to make them bigger for easier use.

2.5.8 Target Size (Minimum) (AA)
Why does it matter?
 Tiny buttons and links are frustrating to click or tap, especially on

touchscreens like phones and tablets. When they’re placed too close
together, it’s even easier to tap the wrong one by mistake.

 People with limited hand control–like those with tremors, arthritis, or
other mobility challenges–may struggle to tap small buttons. If
elements are too close together, they could tap or click the wrong one
or not be able to use it at all.

Who is affected?
 People with mobility impairments.
 People on smaller screens.
 People in unstable environments.
 People with large fingers.

2.5.8 Target Size (Minimum) (AA)
How to implement 2.5.8 - Minimum Size and Spacing
Make all buttons, links, and interactive elements at least 24 x 24 pixels.
If that’s not possible, add extra space around them so they’re easier to
tap.
To make sure buttons meet the size requirement, you can adjust CSS
settings. Use the min-height and min-width CSS properties to set the
minimum size. Or, add padding to help give them a total size of 24 x 24
with the extra spacing in between.
In the image to the right, there are examples of passing and failing
adjacent icons in image:
 In example 1, the buttons are at least 24 x 24 pixels, so they meet

the rule.
 In example 2, the buttons are smaller, but because they have

enough empty space around them, they still pass.
 In example 3, the buttons are both too small and too close together,

making them hard to tap. They don’t meet the rule.

2.5.8 Target Size (Minimum) (AA)
How to implement 2.5.8 - Equivalent Action Element

 An exception to this rule is if there’s another element with the equivalent action on the
page. If this is true, the element can keep its size smaller than 24 x 24 pixels. Note that
other elements must meet this success criterion.

 To the right is an example of a small interactive element to initial a call
right next to a much larger button element with the equivalent action of calling.

Exception for Inline Elements

 Interactive Elements inline with text, such as sentences, paragraphs, etc., are an exception
since the line height limits the size, and it’s impossible to tell where the interactive element
will fall as screen sizes change and the text reflows.

 However, it’s a good idea to increase the line height to keep the text readable and easy to
tap or click.

 Below is an example of a paragraph containing three links, each line is only 12 pixels high,
so the links would technically fail the success criterion. But, since they are part of inline
text, they are an exception. However, it’s recommended that the line height be increased.

2.5.8 Target Size (Minimum) (AA)
Exception for Essentials

 Lastly, if it’s absolutely necessary or legally required for the target size
and spacing to be smaller than 24 x 24 pixels, this rule can be skipped.

 Below is an example of a map where the pins are too close together and
not big enough, but it’s necessary since we can’t control where the pins
will be placed, and if they are too large, they will be indistinguishable
from each other.

3.2.6 Consistent Help (A)
Help options (like contact link, support widget) must appear in the same place
across pages.
Roles Affected:
 Designers
 Developers
 Content Creators/Editors
What is it?
 If a website offers options or info to help users with questions or issues, their

placement on relevant pages should be consistent and stay in the same general
order compared to the other elements on the page. Examples:
 Contact forms or chat systems to reach human support teams

 Chatbots to reach automated systems

 Contact info such as phone number, email address, hours of operation

 Self-help options such as documentation pages or frequently asked questions sections

3.2.6 Consistent Help (A)
Why does it matter?
 When help options or details are scattered across different pages, it can be tough

for users to find the help they need. Moving around contact links, chatbot
popups, or FAQ sections across similar pages can confuse users as they browse a
site.

 For example, imagine seeing a “Contact Us” link in the header of the homepage.
Then, you visit the features page and have a question. You’d expect the “Contact
Us” link to still be in the header, but it’s now at the bottom of the sidebar instead.
You might get frustrated and leave the page without asking your question.

3.2.6 Consistent Help (A)
Who is affected?
 People with cognitive disabilities.
 People with low or limited vision.
 People who are blind.
How to implement 3.2.6
 First, go through the pages on your site and figure out which groups of pages

make up related sets. For example, agency divisions or high-level programs could
be part of the same set. Or, a news release where each post uses a similar
template would be considered a unique set of pages. You may also have sitewide
contact information in a header, footer or side navigation.

 Next, find all the helpful options or information that fall under these categories (if
any):

 Contact Details
 Contact forms or messaging systems
 Self-help options, such as FAQ sections or links to a documentation page
 Chatbots

3.3.7 Redundant Entry (A)
Don’t ask for the same information twice in the same process.
Provide pre-filled fields or selection options if the information was
already given.
Roles Affected:
 Designer
 Developer
What is it?
 A web form should not ask users to enter the same information

more than once in a single session. This is especially important
for multi-step forms and processes. For example, when
completing a checkout form, users should not have to
separately enter their billing and shipping information if they
are the same.

3.3.7 Redundant Entry (A)
Why does it matter?
 Requiring users to remember and re-enter information can

cause stress and mistakes.
 Everyone experiences mental fatigue while completing multi-

step processes and adding memory tasks makes the process
even more difficult.

 Nobody enjoys re-entering the same
information over and over.

Who is affected?
 People with cognitive disabilities.
 People with limited mobility.

3.3.7 Redundant Entry (A)
How to implement 3.3.7
Avoid Duplicate Input
 Remove any fields that ask for the same information more than once.
 Make sure every form input is necessary
Populate Data From Previous Input
 Instead of making users remember what they entered before, auto-fill previous

data
 For fields that appear more than once, make sure there’s a way to populate them

easily. This can be done in a number of ways:
1. Automatically filling the field and letting the user edit if needed
2. Providing a checkbox to let the user choose to fill the field with previous

information
3. Asking the user to confirm if the previous information is still correct. If not,

showing new input fields

3.3.7 Redundant Entry (A)

Most of the time, redundant inputs should be avoided, but
there are some exceptions, such as:
 Games where repeating inputs is part of the challenge, such

as memory quizzes
 Confirming passwords or email addresses for security or

validation reasons
 When previous entries expire and need to be updated

3.3.8 Accessible Authentication (Minimum)
(AA)
Authentication must not rely on memory alone. Allow copy-paste, password
managers, or other options (like email verification).
Roles Affected:
 Designer
 Developer
What is it?
 Authentication, or the ability to log into a website, should not feel like a

memory test. Having to remember passwords, transcribe codes, or solve
puzzles can make logging in unnecessarily difficult.

 The goal is to make authentication simple for everyone, especially those
who have difficulty with memory or complex tasks.

3.3.8 Accessible Authentication (Minimum)
(AA)
Why does it matter?
Issues that can happen during inaccessible authentication setups:
 People forgetting their password and struggling with password

resets
 Difficulty figuring out how to transcribe one-time or time-limited

codes from another device
 Getting stuck on CAPTCHAs that require solving puzzles, math

problems, or working with blurry images
 These issues cause frustration and can prevent people from

accessing critical services like banking, healthcare, or work-related
platforms.

Who is affected?
 People with cognitive disabilities.

3.3.8 Accessible Authentication (Minimum)
(AA)
How to implement 3.3.8
1. Identify Authentication Steps: Locate all processes that require a user

to authenticate, such as logging in, completing a security check like
CAPTCHA, or resetting a password.

2. Evaluate Cognitive Function Tests: For each step, determine if a
cognitive function test is required. This includes tasks such as:
 Remembering a password or code.
 Solving a puzzle.
 Transcribing information from another source, like a code
 Identifying non-text content provided by the user (e.g., a CAPTCHA with

personal images).
 Recognizing objects (e.g., selecting all images with a car).

3.3.8 Accessible Authentication (Minimum)
(AA)
3. Check for Exceptions to the Cognitive Test

Requirement:
 Is the test a cognitive function like object

recognition or personal content identification? If so,
the criterion is met.

 Is it a general cognitive function test? If the test
requires memory or transcription (and is not object or
personal content recognition), then an alternative or
mechanism must be available.

https://www.w3.org/WAI/WCAG22/Understanding/accessible-authentication-minimum.html#object-recognition
https://www.w3.org/WAI/WCAG22/Understanding/accessible-authentication-minimum.html#object-recognition
https://www.w3.org/WAI/WCAG22/Understanding/accessible-authentication-minimum.html#personal-content

3.3.8 Accessible Authentication (Minimum)
(AA)
4. Verify Alternatives or Mechanisms: If a general cognitive

function test is required, ensure one of the following is available:
An Alternative Authentication Method:

1. Biometric authentication (fingerprint, facial recognition).
2. Passwordless login (e.g., email magic links).
3. Other methods not reliant on cognitive ability

A Mechanism to Assist the User:
4. Allowing users to paste into password fields.
5. Providing support for password managers to autofill

credentials.
6. Enabling copy and paste for security codes.

3.3.8 Accessible Authentication (Minimum)
(AA)
5. Verify Input Field Behavior:

 Ensure that input fields do not prevent users from pasting
the entire password or code in one action.

 Confirm that the structure of the fields does not make it
impossible to use a password manager or copy the code.

Sending a code to a separate device
If the code is sent to a separate device, such as via SMS, then it’s
not necessary to validate whether users can copy or transfer the
code between devices. Only the final input needs to be tested
(meaning the final input allows copy/paste).

Questions?

mailto:lainie.strange@oa.mo.gov
https://www.w3.org/WAI/WCAG22/quickref/?currentsidebar=%23col_customize&versions=2.0&levels=aaa
https://www.w3.org/WAI/standards-guidelines/wcag/new-in-21/
https://at.mo.gov/it-access
https://at.mo.gov/it-access
https://www.youtube.com/channel/UCISQV_R05a7YFEcnmGfG5SA
https://at.mo.gov/ict-websites-webapps/
https://at.mo.gov/ict-websites-webapps/

	What’s New in the Web Content Accessibility Guidelines (WCAG) 2.2
	Agenda
	Brief History of WCAG and the State Standard
	WCAG 3.0?
	2.4.11 Focus Not Obscured (Minimum) (AA)
	2.4.11 Focus Not Obscured (Minimum) (AA)
	2.4.11 Focus Not Obscured (Minimum) (AA)
	2.5.7 Dragging Movement (AA)
	2.5.7 Dragging Movement (AA)
	2.5.7 Dragging Movement (AA)
	2.5.8 Target Size (Minimum) (AA)
	2.5.8 Target Size (Minimum) (AA)
	2.5.8 Target Size (Minimum) (AA)
	2.5.8 Target Size (Minimum) (AA)
	2.5.8 Target Size (Minimum) (AA)
	3.2.6 Consistent Help (A)
	3.2.6 Consistent Help (A)
	3.2.6 Consistent Help (A)
	3.3.7 Redundant Entry (A)
	3.3.7 Redundant Entry (A)
	3.3.7 Redundant Entry (A)
	3.3.7 Redundant Entry (A)
	3.3.8 Accessible Authentication (Minimum) (AA)
	3.3.8 Accessible Authentication (Minimum) (AA)
	3.3.8 Accessible Authentication (Minimum) (AA)
	3.3.8 Accessible Authentication (Minimum) (AA)
	3.3.8 Accessible Authentication (Minimum) (AA)
	3.3.8 Accessible Authentication (Minimum) (AA)
	Questions?

